What did we do last lecture?

14th of September 2016
Calculating the tangent

The tangent line is what a curve looks like as we zoom in:
Calculating the tangent

The tangent line is what a curve looks like as we zoom in:
Calculating the tangent

The tangent line is what a curve looks like as we zoom in:

1x

5x
Calculating the tangent

The tangent line is what a curve looks like as we zoom in:

\[1x \quad \text{and} \quad 5x \]
Calculating the tangent

The tangent line is what a curve looks like as we zoom in:
Calculating the tangent

The tangent line is what a curve looks like as we zoom in:

The red line is the tangent line.

The red line is the tangent line.
Calculating the tangent

The slope of any secant between \(a \) and \(x \) is given by

\[
m_{x,a} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a}.
\]
Calculating the tangent

The slope of any secant between a and x is given by

$$m_{x,a} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a}.$$
Calculating the tangent

The slope of any secant between a and x is given by

$$m_{x,a} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a}.$$
Calculating the tangent

The slope of any secant between \(a \) and \(x \) is given by

\[
m_{x,a} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a}.
\]
Calculating the tangent

The slope of any secant between a and x is given by

$$m_{x,a} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a}.$$
Calculating the tangent

The slope of any secant between a and x is given by

$$m_{x,a} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a}.$$

The slope of the tangent, m_t, is what happens when x approaches $a.$
Calculating the tangent

One way of doing this is

\[m_t = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}. \]

This is precisely the same as letting \(x = a + h \) and letting \(h \to 0 \). So

\[m_t = \lim_{h \to 0} \frac{f(a + h) - f(a)}{(a + h) - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}. \]

so that \(m_t \) is the slope of the tangent line at \((a, f(a))\).
Calculating the tangent

So the slope of the tangent

\[m_t = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} . \]

The tangent at \((a, f(a))\) is the line of slope \(m_t\) through \((a, f(a))\):

\[y - f(a) = m_t(x - a) \]

so let's put it together in an example.
Calculating the tangent

Let us take an example,

\[f(x) = \frac{1}{x}, \]

let us calculate the tangent at \(x = 2 \).
Calculating the tangent
So firstly let us calculate the slope

\[f(x) = \frac{1}{x}, \]

at \((2, 1/2)\). So we need the limit

\[m_t = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0} \frac{1}{2 + h} - \frac{1}{2}. \]
Calculating the tangent

Using the value $m_t = 1/4$, the tangent at $(x_0, y_0) = (2, 1/2)$

\[
y - y_0 = m_t(x - x_0), \quad y - \frac{1}{2} = -\frac{1}{4}(x - 2), \quad y = -\frac{1}{4}x + 1
\]
Calculating the tangent

Using the value $m_t = 1/4$, the tangent at $(x_0, y_0) = (2, 1/2)$

\[y - y_0 = m_t(x - x_0), \]
\[y - 1/2 = -1/4(x - 2), \quad y = -1/4x + 1 \]
Constructing a tangent line

Rate of change

Given a function f, the average rate of change on the interval $[a, x]$ is

$$m_s = \frac{f(x) - f(a)}{x - a},$$

the instantaneous rate of change at $x = a$ is

$$m_t = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h},$$

which is the slope of the tangent line, provided it exists.
Constructing a tangent line

Given a function \(f \), the tangent at \(x = a \) is the unique line through \((a, f(a)) \) with a slope equal to the instantaneous rate of change at \(x = a \), \(m_t \), its equation is

\[
y - f(a) = m_t(x - a),
\]
Constructing a tangent line

Lets do an example in the book

\[f(x) = x^3 + 4x \]

at \(x = 1 \) (since \(f(1) = 5 \), we are going through the point \((1, 5)\)).

\[m_t = \]
Constructing a tangent line

Lets do an example in the book

\[f(x) = x^3 + 4x \]

at \(x = 1 \) (since \(f(1) = 5 \), we are going through the point \((1, 5) \)).

\[m_t = 7, \]
The Derivative

The derivative is a **function** representing the slope of the tangent at any point.

Given any \(x \), the derivative is the function

\[
f'(x) = \frac{df(x)}{dx} = \lim_{x \to a} \frac{f(x + h) - f(x)}{h},
\]

provided it exists. If this limit exists at a point \(x = a \) we call the function differentiable at \(x = a \).
The tangent again

To find the slope of the tangent,

\[m_t = f'(a) \]

so that the general formula for the tangent for \(x = a \), at the point \((a, f(a))\) is

\[y - f(a) = f'(a)(x - a). \]
The Derivative

Let us consider the curve

\[y = f(x) = \sin(x), \]

the derivative (as we will see later) is \(\cos(x) \).

Notice the slope of the tangent is 0 when \(\cos(x) = 0 \).
Higher derivatives

We can certainly take derivatives of derivatives.

Higher order derivatives

Assuming that \(f \) can be differentiated as often as necessary, we define

\[
f''(x) = \frac{df'(x)}{dx} = \frac{d^2f(x)}{dx^2},
\]

more generally, for any integer \(n \geq 1 \), the \(n \)-th derivative is

\[
f^{(n)}(x) = \frac{d^n f(x)}{dx^n}, \quad \frac{df^{(n-1)}(x)}{dx^2}.
\]
Let us compute the derivative of

\[f(x) = x^5 \]
Polynomials

More generally

\[f(x) = x^n \]
If n is any integer and $f(x) = x^n$, then the derivative is

$$f'(x) = \frac{df(x)}{dx} = nx^{n-1}.$$

This applies to polynomials ONLY.
Polynomials

Using this general rule, we find the derivative is

\[f(x) = x^4 + 2x^2 + 2, \]

hence, we can calculate the tangent at \(x = 1 \) as follows.